Fast Feedback System for Energy and Beam Stabilization
نویسندگان
چکیده
The electron beams being delivered to targets of the Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson National Accelerator Facility (Jefferson Lab) are plagued with undesirable positional and energy fluctuations. These fluctuations primarily occur at harmonics of the power line frequency (60, 120, 180, etc. hertz), and their cause is rooted in electromagnetic fields generated by accelerator electronic equipment. It is possible to largely nullify these deviations by applying real time corrections to electromagnets and RF verniers along the beam line. This concept has been successfully applied at Jefferson Lab by extensively modifying the existing Beam Position Monitor (BPM) system with the integration of an algorithm that computes correction signals targeted at the power line harmonics. Many of the modifications required were due to the existing CEBAF BPM system not having the data acquisition bandwidth needed for this type of feedback system. This paper will describe the techniques required to transform the CEBAF standard BPM system into a high speed practical fast feedback system that coexists with the large scale control system the Experimental Physics and Industrial Control System (EPICS) that runs the CEBAF accelerator in daily operation.
منابع مشابه
Fast Digital Feedback System for Energy and Beam Position Stabilization
A digital fast feedback system for beam energy and position stabilization at the target of the CEBAF accelerator is capable of suppressing beam motion in the frequency band from 0 to 80 Hz and also performs narrow band suppression at the first twelve power line harmonics. The system utilizes two VME computers and runs at a 2.4 kHz sampling rate. The numerical algorithm is based on a recursive d...
متن کاملFast Feedback for Linear Colliders
A fast feedback system provides beam stabilization for the SLC. As the SLC is in some sense a prototype for future linear colliders, this system may be a prototype for future feedbacks. The SLC provides a good base of experience for feedback requirements and capabilities as well as a testing ground for performance characteristics. The feedback system controls a wide variety of machine parameter...
متن کاملStabilization of chaotic systems via fuzzy time-delayed controller approac
In this paper, we investigate the stabilization of unstable periodic orbits of continuous time chaotic systems usingfuzzy time-delayed controllers. For this aim, we present a control method that can achieve stabilization of an unstableperiodic orbit (UPO) without any knowledge of the system model. Our proposal is attained progressively. First, wecombine the input-to-state linearizing controller...
متن کاملPosition and flux stabilization of X-ray beams produced by double-crystal monochromators for EXAFS scans at the titanium K-edge.
The simultaneous and active feedback stabilization of X-ray beam position and monochromatic beam flux during EXAFS scans at the titanium K-edge as produced by a double-crystal monochromator beamline is reported. The feedback is generated using two independent feedback loops using separate beam flux and position measurements. The flux is stabilized using a fast extremum-searching algorithm that ...
متن کاملDesign of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller
In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...
متن کامل